Telf. 963 39 50 37 · formaciofla@uv.es

Blog de Cirugía e Implantología Oral

26 feb 2016

Impact of crestal and subcrestal implant placement in peri-implant bone: A prospective comparative study

Pellicer-Chover H, Peñarrocha-Diago MA, Peñarrocha-Oltra D, Gomar-Vercher S, Agustín-Panadero R, Peñarrocha-Diago M. Impact of crestal and subcrestal implant placement in peri-implant bone: A prospective comparative study. Med Oral Patol Oral Cir Bucal. 2016 Jan 1;21 (1):e103-10.

Abstract

BACKGROUND:

To assess the influence of the crestal or subcrestal placement of implants upon peri-implant bone loss over 12 months of follow-up.

MATERIAL AND METHODS:

Twenty-six patients with a single hopeless tooth were recruited in the Oral Surgery Unit (Valencia University, Valencia, Spain). The patients were randomized into two treatment groups: group A (implants placed at crestal level) or group B (implants placed at subcrestallevel). Control visits were conducted by a trained clinician at the time of implant placement and 12 months after loading. A previously established standard protocol was used to compile general data on all patients (sex and age, implant length and diameter, and brushing frequency). Implantsuccess rate, peri-implant bone loss and the treatment of the exposed implant surface were studied. The level of statistical significance was defined as 5% (α=0.05).

RESULTS:

Twenty-three patients (8 males and 15 females, mean age 49.8±11.6 years, range 28-75 years) were included in the final data analyses, while three were excluded. All the included subjects were non-smokers with a brushing frequency of up to twice a day in 85.7% of the cases. The 23 implants comprised 10 crestal implants and 13 subcrestal implants. After implant placement, the mean bone position with respect to the implantplatform in group A was 0.0 mm versus 2.16±0.88 mm in group B. After 12 months of follow-up, the mean bone positions were -0.06±1.11 mm and 0.95±1.50 mm, respectively – this representing a bone loss of 0.06±1.11 mm in the case of the crestal implants and of 1.22±1.06 mm in the case of the subcrestal implants (p=0.014). Four crestal implants and 5 subcrestal implants presented peri-implant bone levels below the platform, leaving a mean exposed treated surface of 1.13 mm and 0.57 mm, respectively. The implant osseointegration success rate at 12 months was 100% in both groups.

CONCLUSIONS:

Within the limitations of this study, bone loss was found to be greater in the case of the subcrestal implants, though from the clinical perspective these implants presented bone levels above the implant platform after 12 months of follow-up.

Pubmed


PDF